foster+freeman BLOG
CBRNE Forensics
One area of forensics that is ever expanding and growing is that of chemical, biological, radioactive, nuclear, and explosive crime scene investigation – CBRNe CSI for short. This is a fascinating topic in the world of forensics that, unfortunately, keeps growing each year.
Processing crime scenes suspected to involve CBRN or other potentially hazardous materials requires using specialist equipment and techniques designed to visualise, capture, and recover forensic evidence under challenging conditions.
Much like forensic science and crime scene investigation, the world of CBRNe is complex and ever-evolving. Scientists, engineers, and policymakers work together to protect us from the threat of highly destructive and non-conventional weapons.
CSI Vs CBRN
Traditional CSI versus CBRN investigation
Much like forensic science and crime scene investigation, the world of CBRNe is complex and ever-evolving. Scientists, engineers, and policymakers work together to protect us from the threat of highly destructive and non-conventional weapons.
Typically, CBRNe examiners are highly trained professionals from police or military backgrounds who use specialised equipment and techniques to safely collect, analyse, and interpret evidence in extremely hazardous environments.
It is necessary to compare the difference between normal CSI and CBRNE CSI officers to identify the procedures and SOPs needed when dealing with hazardous materials. In a traditional CSI environment, the priority is to secure the scene and preserve any evidence within that scene; within the potential CBRN environment, the health and safety of the CSI must be considered along with this. The United Nations Office on Drugs and Crime (UNODC) guidelines state one of the main objectives of the protection of the crime scene and its evidence is to ensure appropriate anti-contamination measures in such a way as to protect the integrity of the identified evidence. Identifying, securing and recovering evidence from crime scenes represent a challenging part of the investigation. It requires intensive work by investigators and spending time performing the duties.
So, what are the differences between traditional CSI and CBRN CSI?
The added danger of a CBRN scene makes the crime scene investigation process very complicated and time-consuming compared to your standard CSI setting. One of the key differences is that CBRN scenes typically contain hazardous materials that can affect the health and safety of the investigators and may affect the evidence validity; these can be anything from chemicals, narcotics, explosives or radioactive substances. Don’t assume that because of its hazardous nature, CBRN scenes only occur in certain environments; they can be anywhere: inside a factory, in a forest, in a house or a car. Therefore, CBRN investigators must be versatile with the type of scene they respond to, just like your average crime scene.
Crime-lite PRO Range
Next Generation of forensic light sources
With the requirement to meet the highest possible standards in mind, foster+freeman set about designing the Crime-lite PRO range of forensic light sources.
Built on the existing Crime-lite 82S technology, the Crime-lite PRO provides examiners with what we’re confident is the absolute best-in-class handheld forensic light source currently available.
Available in a full selection of illumination wavelengths, with some subtle hardware improvements and equipped with a new range of PRO VISION examination accessories, Crime-lite PRO raises the bar for forensic light source examination at the crime scene.
Most traditional forensic examiners will use the standard Crime-lite PRO, which includes an internal cooling fan. However, in a CBRNe environment, the risk of dangerous chemicals being disturbed or becoming airborne may be considered unacceptable. We also manufacture a fanless option that uses passive cooling to maintain the optimum running temperature for these situations.
The light sources, or at least predecessors in the Crime-lite family, are used worldwide by forensic investigators to search for and detect evidence – their build quality is unquestionable, and their ability to detect evidence is unmatched.
Optical Detection of Fourth-Generation Agents
Research paper by CBRN Defence Center Korneuberg, Austria
In 2023, the CBRN defence centre published a paper in Korneuberg, Austria, exploring the Optical Detection of Fourth-Generation Agents (FGAs) Using Handheld Forensic Light Sources. They tested Crime-lite forensic light sources to detect fourth-generation neurotoxins and nerve agents, including the Novichok chemical that was used during the Skripal incident.
Based at the ABC Defence Training Centre in Korneuburg, Austria, a team of researchers led by chemical weapons expert Gerald Bauer used a selection of Crime-lite light sources to induce fluorescence in the Novichok family of substances.
“Based on handheld forensic light sources, surface contamination with FGAs could be visualized. Simple and fast on-scene management for suspected FGA incidents is enabled for the first time, and CBRN consequence management can be expedited. This procedure allows surfaces to be screened rapidly to visualize the contamination by an FGA. Instead of investigating the whole area, only particular parts of surfaces showing a light response need to be examined by CBRN identification and sampling processes. Forensic traces without detection response could be handled and exploited with reduced or even without CBRN safety precautions.”
Crime Scene Novichok—Optical Detection of
Fourth-Generation Agents (FGAs) Using Handheld Forensic
Light Sources
Experts in the field are excited by this breakthrough in detection primarily because until now, nerve agents and warfare agents from the Novichok group had been notoriously difficult to detect, proving to be virtually undetectable with gas detectors and requiring examiners to perform the time-consuming and costly exercise of swabbing samples to be sent for laboratory testing – which is fine for a few samples but impractical when searching a larger area.
The research, in combination with exposure at convergence training events, has opened the door for a whole new generation of forensic CBRNe technologies and exposed the need for cross-training between the two disciplines.
Conclusion
In conclusion, chemical, Biological, Radioactive, Nuclear, and Explosive Crime Scene Investigation is a critical area of the broader field of forensic science. As our world grapples with the increasing threat of unconventional weapons and hazardous materials, the need for specialized CBRNe investigators has become paramount. The complexity of CBRN crime scenes demands a meticulous approach, differentiating it significantly from traditional Crime Scene Investigation (CSI).
The divergence between traditional CSI and CBRNe CSI is evident in the unique challenges posed by hazardous materials in CBRN scenes. From chemicals and narcotics to explosives and radioactive substances, the health and safety of investigators have become a primary concern. The meticulous identification, securing, and recovery of evidence in CBRN environments require specialised equipment and a comprehensive understanding of anti-contamination measures.
The breakthrough that crime-lites can effectively detect and identify nerve agents like Novichok presents a significant stride in CBRNe technology. The ability to visualize surface contamination rapidly, particularly with nerve agents like Novichok, revolutionizes on-scene management and accelerates CBRN consequence management. This breakthrough enhances detection capabilities and underscores the necessity for cross-training between traditional forensic disciplines and CBRNe experts.
In a world where incidents like the Skripal poisoning highlight the urgency of CBRNe expertise, the collaboration between scientists, engineers, and policymakers remains crucial. The dedication to refining techniques, advancing technology, and ensuring the safety of investigators reflects a shared commitment to safeguarding communities from the threats posed by highly destructive and non-conventional weapons.
As the field of CBRNe CSI continues to evolve, this specialized branch of forensic science protects against potential dangers and sets a precedent for interdisciplinary cooperation. In facing the ever-expanding challenges of CBRN crime, the collaboration between traditional CSI and CBRNe experts becomes indispensable for a safer and more secure future.
Learn More
Crime-lite® 82S PRO
Detect more evidence using Crime-lite 82S PRO light sources, a powerful upgrade to our best-in-class forensic search tools.
Used and trusted by law enforcement, military, and clinical forensic examiners worldwide, Crime-lite 82S light sources can be relied upon to provide the high-intensity narrow bandwidth illumination required to detect even the smallest traces of forensic evidence.
Now, the Crime-lite 82S PRO range builds upon that time-proven technology, providing CSIs and forensic examiners with the illumination they need to Detect More Evidence.
Crime-lite® AUTO
A Compact and Portable Solution for Multispectral Examination
RELATED WEBINAR
CBRNE x CSI
In this webinar we will explore forensic technology’s military and defence applications. We will look at how forensic technology can be used in the military. We will discuss the different applications of forensic technologies for defence purposes.
We will look at the theory behind why forensic technology is used in defence and demonstrate how our products can help in military and defence.